Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420960

RESUMO

What happened when eLife decided to eliminate accept/reject decisions after peer review?


Assuntos
Revisão da Pesquisa por Pares , Revisão por Pares
2.
PLoS Comput Biol ; 20(1): e1011721, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38181064

RESUMO

Histones compact and store DNA in both Eukarya and Archaea, forming heterodimers in Eukarya and homodimers in Archaea. Despite this, the folding mechanism of histones across species remains unclear. Our study addresses this gap by investigating 11 types of histone and histone-like proteins across humans, Drosophila, and Archaea through multiscale molecular dynamics (MD) simulations, complemented by NMR and circular dichroism experiments. We confirm and elaborate on the widely applied "folding upon binding" mechanism of histone dimeric proteins and report a new alternative conformation, namely, the inverted non-native dimer, which may be a thermodynamically metastable configuration. Protein sequence analysis indicated that the inverted conformation arises from the hidden ancestral head-tail sequence symmetry underlying all histone proteins, which is congruent with the previously proposed histone evolution hypotheses. Finally, to explore the potential formations of homodimers in Eukarya, we utilized MD-based AWSEM and AI-based AlphaFold-Multimer models to predict their structures and conducted extensive all-atom MD simulations to examine their respective structural stabilities. Our results suggest that eukaryotic histones may also form stable homodimers, whereas their disordered tails bring significant structural asymmetry and tip the balance towards the formation of commonly observed heterotypic dimers.


Assuntos
Archaea , Histonas , Humanos , Histonas/química , Archaea/genética , Simulação de Dinâmica Molecular , DNA , Eucariotos/genética , Dobramento de Proteína
3.
Elife ; 122023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37728600

RESUMO

Chromatin accessibility is modulated in a variety of ways to create open and closed chromatin states, both of which are critical for eukaryotic gene regulation. At the single molecule level, how accessibility is regulated of the chromatin fiber composed of canonical or variant nucleosomes is a fundamental question in the field. Here, we developed a single-molecule tracking method where we could analyze thousands of canonical H3 and centromeric variant nucleosomes imaged by high-speed atomic force microscopy. This approach allowed us to investigate how changes in nucleosome dynamics in vitro inform us about transcriptional potential in vivo. By high-speed atomic force microscopy, we tracked chromatin dynamics in real time and determined the mean square displacement and diffusion constant for the variant centromeric CENP-A nucleosome. Furthermore, we found that an essential kinetochore protein CENP-C reduces the diffusion constant and mobility of centromeric nucleosomes along the chromatin fiber. We subsequently interrogated how CENP-C modulates CENP-A chromatin dynamics in vivo. Overexpressing CENP-C resulted in reduced centromeric transcription and impaired loading of new CENP-A molecules. From these data, we speculate that factors altering nucleosome mobility in vitro, also correspondingly alter transcription in vivo. Subsequently, we propose a model in which variant nucleosomes encode their own diffusion kinetics and mobility, and where binding partners can suppress or enhance nucleosome mobility.


Assuntos
Cromatina , Nucleossomos , Proteína Centromérica A , Microscopia de Força Atômica , Imagem Individual de Molécula
4.
Chromosoma ; 132(3): 137-138, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37419962
5.
J Mol Biol ; 435(11): 168019, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37330288

RESUMO

All life forms sense and respond to mechanical stimuli. Throughout evolution, organisms develop diverse mechanosensing and mechanotransduction pathways, leading to fast and sustained mechanoresponses. Memory and plasticity characteristics of mechanoresponses are thought to be stored in the form of epigenetic modifications, including chromatin structure alterations. These mechanoresponses in the chromatin context share conserved principles across species, such as lateral inhibition during organogenesis and development. However, it remains unclear how mechanotransduction mechanisms alter chromatin structure for specific cellular functions, and if altered chromatin structure can mechanically affect the environment. In this review, we discuss how chromatin structure is altered by environmental forces via an outside-in pathway for cellular functions, and the emerging concept of how chromatin structure alterations can mechanically affect nuclear, cellular, and extracellular environments. This bidirectional mechanical feedback between chromatin of the cell and the environment can potentially have important physiological implications, such as in centromeric chromatin regulation of mechanobiology in mitosis, or in tumor-stroma interactions. Finally, we highlight the current challenges and open questions in the field and provide perspectives for future research.


Assuntos
Cromatina , Epigenoma , Mecanotransdução Celular , Mitose , Cromatina/química , Cromatina/genética , Mecanotransdução Celular/genética , Humanos , Neoplasias , Células Estromais
6.
Mol Cell ; 83(10): 1659-1676.e11, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37116496

RESUMO

Epigenetic alterations are a key hallmark of aging but have been limitedly explored in tissues. Here, using naturally aged murine liver as a model and extending to other quiescent tissues, we find that aging is driven by temporal chromatin alterations that promote a refractory cellular state and compromise cellular identity. Using an integrated multi-omics approach and the first direct visualization of aged chromatin, we find that globally, old cells show H3K27me3-driven broad heterochromatinization and transcriptional suppression. At the local level, site-specific loss of H3K27me3 over promoters of genes encoding developmental transcription factors leads to expression of otherwise non-hepatocyte markers. Interestingly, liver regeneration reverses H3K27me3 patterns and rejuvenates multiple molecular and physiological aspects of the aged liver.


Assuntos
Cromatina , Histonas , Camundongos , Animais , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Epigênese Genética , Envelhecimento/genética , Fatores de Transcrição/metabolismo
7.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824822

RESUMO

Epigenetic alterations are a key hallmark of aging but have been limitedly explored in tissues. Here, using naturally aged murine liver as a model and extending to other quiescent tissues, we find that aging is driven by temporal chromatin alterations that promote a refractory cellular state and compromise cellular identity. Using an integrated multi-omics approach, and the first direct visualization of aged chromatin we find that globally, old cells show H3K27me3-driven broad heterochromatinization and transcription suppression. At the local level, site-specific loss of H3K27me3 over promoters of genes encoding developmental transcription factors leads to expression of otherwise non-hepatocyte markers. Interestingly, liver regeneration reverses H3K27me3 patterns and rejuvenates multiple molecular and physiological aspects of the aged liver.

8.
bioRxiv ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38313258

RESUMO

Aging involves a range of genetic, epigenetic, and physiological alterations. A key characteristic of aged cells is the loss of global heterochromatin, accompanied by a reduction in canonical histone levels. In this study, we track the fate of centromeres during aging in human cells. Our findings reveal that the centromeric histone H3 variant CENP-A is downregulated in aged cells, in a p53-dependent manner. We observe repression of centromeric noncoding transcription through an epigenetic mechanism via recruitment of a lysine-specific demethylase 1 (LSD1/KDM1A) to centromeres. This suppression results in defective de novo CENP-A loading at aging centromeres. By dual inhibition of p53 and LSD1/KDM1A in aged cells, we mitigate the reduction in centromeric proteins and centromeric transcripts, leading to mitotic rejuvenation of these cells. These results offer insights into a novel mechanism for centromeric inactivation during aging and provide potential strategies to reactivate centromeres.

9.
Front Cell Dev Biol ; 10: 943519, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966762

RESUMO

Aging is an inexorable event occurring universally for all organisms characterized by the progressive loss of cell function. However, less is known about the key events occurring inside the nucleus in the process of aging. The advent of chromosome capture techniques and extensive modern sequencing technologies have illuminated a rather dynamic structure of chromatin inside the nucleus. As cells advance along their life cycle, chromatin condensation states alter which leads to a different epigenetic landscape, correlated with modified gene expression. The exact factors mediating these changes in the chromatin structure and function remain elusive in the context of aging cells. The accumulation of DNA damage, reactive oxygen species and loss of genomic integrity as cells cease to divide can contribute to a tumor stimulating environment. In this review, we focus on genomic and epigenomic changes occurring in an aged cell which can contribute to age-related tumor formation.

10.
Sci Adv ; 8(9): eabl5621, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235361

RESUMO

Chromosome instability is a critical event in cancer progression. Histone H3 variant CENP-A plays a fundamental role in defining centromere identity, structure, and function but is innately overexpressed in several types of solid cancers. In the cancer background, excess CENP-A is deposited ectopically on chromosome arms, including 8q24/cMYC locus, by invading transcription-coupled H3.3 chaperone pathways. Up-regulation of lncRNAs in many cancers correlates with poor prognosis and recurrence in patients. We report that transcription of 8q24-derived oncogenic lncRNAs plays an unanticipated role in altering the 8q24 chromatin landscape by H3.3 chaperone-mediated deposition of CENP-A-associated complexes. Furthermore, a transgene cassette carrying specific 8q24-derived lncRNA integrated into a naïve chromosome locus recruits CENP-A to the new location in a cis-acting manner. These data provide a plausible mechanistic link between locus-specific oncogenic lncRNAs, aberrant local chromatin structure, and the generation of new epigenetic memory at a fragile site in human cancer cells.


Assuntos
Neoplasias , RNA Longo não Codificante , Carcinogênese/genética , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Cromatina/genética , Epigênese Genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , RNA Longo não Codificante/genética
11.
Chromosoma ; 130(4): 235-236, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34850272
12.
Open Biol ; 11(8): 210124, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34343462

RESUMO

Histone H1s or the linker histones are a family of dynamic chromatin compacting proteins that are essential for higher-order chromatin organization. These highly positively charged proteins were previously thought to function solely as repressors of transcription. However, over the last decade, there is a growing interest in understanding this multi-protein family, finding that not all variants act as repressors. Indeed, the H1 family members appear to have distinct affinities for chromatin and may potentially affect distinct functions. This would suggest a more nuanced contribution of H1 to chromatin organization. The advent of new technologies to probe H1 dynamics in vivo, combined with powerful computational biology, and in vitro imaging tools have greatly enhanced our knowledge of the mechanisms by which H1 interacts with chromatin. This family of proteins can be metaphorically compared to the Golden Snitch from the Harry Potter series, buzzing on and off several regions of the chromatin, in combat with competing transcription factors and chromatin remodellers, thereby critical to the epigenetic endgame on short and long temporal scales in the life of the nucleus. Here, we summarize recent efforts spanning structural, computational, genomic and genetic experiments which examine the linker histone as an unseen architect of chromatin fibre in normal and diseased cells and explore unanswered fundamental questions in the field.


Assuntos
Núcleo Celular/genética , Cromatina/química , Cromatina/genética , Doença/genética , Epigenoma , Regulação da Expressão Gênica , Histonas/fisiologia , Animais , Humanos , Transcrição Gênica
13.
Nat Cell Biol ; 23(4): 401-412, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33837287

RESUMO

Rewiring of cellular programmes in malignant cells generates cancer-specific vulnerabilities. Here, using an unbiased screening strategy aimed at identifying non-essential genes required by tumour cells to sustain unlimited proliferative capacity, we identify the male-specific lethal (MSL) acetyltransferase complex as a vulnerability of genetically unstable cancers. We find that disruption of the MSL complex and consequent loss of the associated H4K16ac mark do not substantially alter transcriptional programmes but compromise chromosome integrity and promote chromosomal instability (CIN) that progressively exhausts the proliferative potential of cancer cells through a p53-independent mechanism. This effect is dependent on pre-existing genomic instability, and normal cells are insensitive to MSL disruption. Using cell- and patient-derived xenografts from multiple cancer types, we show that excessive CIN induced by MSL disruption inhibits tumour maintenance. Our findings suggest that targeting MSL may be a valuable means to increase CIN beyond the level tolerated by cancer cells without inducing severe adverse effects in normal tissues.


Assuntos
Proliferação de Células/genética , Instabilidade Cromossômica/genética , Complexos Multiproteicos/genética , Neoplasias/genética , Animais , Linhagem Celular Tumoral , Reprogramação Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Xenoenxertos , Histona Acetiltransferases/genética , Humanos , Camundongos , Neoplasias/patologia , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética
15.
J Mol Biol ; 433(6): 166881, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33617899

RESUMO

Linker histone H1 is an essential regulatory protein for many critical biological processes, such as eukaryotic chromatin packaging and gene expression. Mis-regulation of H1s is commonly observed in tumor cells, where the balance between different H1 subtypes has been shown to alter the cancer phenotype. Consisting of a rigid globular domain and two highly charged terminal domains, H1 can bind to multiple sites on a nucleosomal particle to alter chromatin hierarchical condensation levels. In particular, the disordered H1 amino- and carboxyl-terminal domains (NTD/CTD) are believed to enhance this binding affinity, but their detailed dynamics and functions remain unclear. In this work, we used a coarse-grained computational model, AWSEM-DNA, to simulate the H1.0b-nucleosome complex, namely chromatosome. Our results demonstrate that H1 disordered domains restrict the dynamics and conformation of both globular H1 and linker DNA arms, resulting in a more compact and rigid chromatosome particle. Furthermore, we identified regions of H1 disordered domains that are tightly tethered to DNA near the entry-exit site. Overall, our study elucidates at near-atomic resolution the way the disordered linker histone H1 modulates nucleosome's structural preferences and conformational dynamics.


Assuntos
Montagem e Desmontagem da Cromatina , DNA/química , Histonas/química , Proteínas Intrinsicamente Desordenadas/química , Nucleossomos/ultraestrutura , Animais , DNA/genética , DNA/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Nucleossomos/química , Nucleossomos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Eletricidade Estática , Xenopus laevis/genética , Xenopus laevis/metabolismo
16.
J Mol Biol ; 433(6): 166720, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33221335

RESUMO

Chromatin is the epigenomic platform for diverse nuclear processes such as DNA repair, replication, transcription, telomere, and centromere function. In cancer cells, mutations in key processes result in DNA amplification, chromosome translocations, and chromothripsis, severely distorting the natural chromatin state. In normal and diseased states, dozens of chromatin effectors alter the physical integrity and dynamics of chromatin at the level of both single nucleosomes and arrays of nucleosomes folded into 3-dimensional shapes. Integrating these length scales, from the 10 nm sized nucleosome to mitotic chromosomes, whilst jostling within the crowded environment of the cell, cannot yet be achieved by a single technology. In this review, we discuss tools that have proven powerful in the investigation of nucleosome and chromatin fiber dynamics. We also provide a deeper focus into atomic force microscopy (AFM) applications that can bridge diverse length and time scales. Using time course AFM, we observe that chromatin condensation by H1.5 is dynamic, whereas using nano-indentation force spectroscopy we observe that both histone variants and nucleosome binding partners alter material properties of individual nucleosomes. Finally, we demonstrate how high-speed AFM can visualize plasmid DNA dynamics, intermittent nucleosome-nucleosome contacts, and changes in nucleosome phasing along a contiguous chromatin fiber. Altogether, the development of innovative technologies holds the promise of revealing the secret lives of nucleosomes, potentially bridging the gaps in our understanding of how chromatin works within living cells and tissues.


Assuntos
DNA/química , Epigênese Genética , Genoma , Histonas/química , Microscopia de Força Atômica/métodos , Nucleossomos/ultraestrutura , Animais , Montagem e Desmontagem da Cromatina , DNA/genética , DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Histonas/genética , Histonas/metabolismo , Humanos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Nucleossomos/química , Nucleossomos/metabolismo , Pinças Ópticas , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Imagem Individual de Molécula/métodos
17.
Nucleus ; 11(1): 264-282, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32954931

RESUMO

The interplay between transcription factors, chromatin remodelers, 3-D organization, and mechanical properties of the chromatin fiber controls genome function in eukaryotes. Besides the canonical histones which fold the bulk of the chromatin into nucleosomes, histone variants create distinctive chromatin domains that are thought to regulate transcription, replication, DNA damage repair, and faithful chromosome segregation. Whether histone variants translate distinctive biochemical or biophysical properties to their associated chromatin structures, and whether these properties impact chromatin dynamics as the genome undergoes a multitude of transactions, is an important question in biology. Here, we describe single-molecule nanoindentation tools that we developed specifically to determine the mechanical properties of histone variant nucleosomes and their complexes. These methods join an array of cutting-edge new methods that further our quantitative understanding of the response of chromatin to intrinsic and extrinsic forces which act upon it during biological transactions in the nucleus.


Assuntos
Montagem e Desmontagem da Cromatina , Histonas/química , Nucleossomos/química , Células HeLa , Histonas/metabolismo , Histonas/ultraestrutura , Humanos , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Análise Espectral
18.
Neurooncol Adv ; 2(1): vdaa007, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642676

RESUMO

Histone mutations occur in approximately 4% of different cancer types. In 2012, mutations were found in the gene encoding histone variant H3.3 (H3F3A gene) in pediatric diffuse intrinsic pontine gliomas and pediatric hemispheric gliomas. Tumors with mutations in the H3F3A gene are generally characterized as histone mutated gliomas (HMGs) or diffuse midline gliomas. HMGs are a rare subtype of glial tumor that is malignant and fast growing, carrying a poor prognosis. In 2017, the Beau Biden Cancer Moonshot Program appropriated $1.7 billion toward cancer care in 10 select areas. The National Cancer Institute (NCI) was granted support to focus specifically on rare central nervous system (CNS) tumors through NCI-CONNECT. Its mission is to address the challenges and unmet needs in CNS cancer research and treatment by connecting patients, providers, researchers, and advocacy organizations to work in partnership. On September 27, 2018, NCI-CONNECT convened a workshop on histone mutated midline glioma, one of the 12 CNS cancers included in its initial portfolio. Three leaders in the field provided an overview of advances in histone mutated midline glioma research. These experts shared observations and experiences related to common scientific and clinical challenges in studying these tumors. Although the clinical focus of this workshop was on adult patients, one important objective was to start a collaborative dialogue between pediatric and adult clinicians and researchers. Meeting participants identified needs for diagnostic and treatment standards, disease biology and biological targets for this cancer, disease-specific trial designs, and developed a list of action items and future direction.

19.
Cells ; 9(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121488

RESUMO

The nucleus has been studied for well over 100 years, and chromatin has been the intense focus of experiments for decades. In this review, we focus on an understudied aspect of chromatin biology, namely the chromatin fiber polymer's mechanical properties. In recent years, innovative work deploying interdisciplinary approaches including computational modeling, in vitro manipulations of purified and native chromatin have resulted in deep mechanistic insights into how the mechanics of chromatin might contribute to its function. The picture that emerges is one of a nucleus that is shaped as much by external forces pressing down upon it, as internal forces pushing outwards from the chromatin. These properties may have evolved to afford the cell a dynamic and reversible force-induced communication highway which allows rapid coordination between external cues and internal genomic function.


Assuntos
Núcleo Celular/metabolismo , Nucleossomos/metabolismo , Humanos , Modelos Moleculares
20.
Biophys J ; 118(9): 2309-2318, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32097625

RESUMO

Histone variants regulate replication, transcription, DNA damage repair, and chromosome segregation. Though widely accepted as a paradigm, it has not been rigorously demonstrated that histone variants encode unique mechanical properties. Here, we present a new theoretical approach called minimal cylinder analysis that uses strain fluctuations to determine the Young's modulus of nucleosomes from all-atom molecular dynamics simulations. Recently, we validated this computational tool against in vitro single-molecule nanoindentation of histone variant nucleosomes. In this report, we further extend minimal cylinder analysis to study the biophysical properties of hybrid nucleosomes that are known to exist in human cancer cells and contain H3 histone variants CENP-A and H3.3. Here, we report that the heterotypic nucleosome has an intermediate elasticity (8.5 ± 0.5 MPa) compared to CENP-A (6.2 ± 0.4 MPa) and H3 (9.8 ± 0.7 MPa) and that the dynamics of both canonical and CENP-A nucleosomes are preserved and partitioned across the nucleosome pseudodyad. Furthermore, we investigate the mechanism by which the elasticity of these heterotypic nucleosomes augments cryptic binding surfaces. From these analyses, we predict that the heterotypic nucleosome is permissive to the binding of one copy of the kinetochore protein CENP-C while still retaining a closed DNA end configuration required for linker histone H1 to bind. We discuss that the ectopic deposition of CENP-A in cancer by H3.3 chaperones HIRA and DAXX may fortuitously result in hybrid nucleosome formation. Using these results, we propose biological outcomes that might arise when such heterotypic nucleosomes occupy large regions of the genome.


Assuntos
Cinetocoros , Nucleossomos , Autoantígenos , Centrômero , Proteína Centromérica A , Segregação de Cromossomos , DNA/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...